Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity
نویسندگان
چکیده
Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture.
منابع مشابه
Minocycline improves memory in a passive avoidance task following cerebral ischemia-reperfusion by enhancing hippocampal synaptic plasticity and restoring antioxidant enzyme activity in rats
Introduction: Oxidative stress plays a crucial role in the impairment of synaptic plasticity following cerebral ischemia which ultimately results in memory dysfunction. Hence, application of antioxidant agents could be beneficial in the management of memory deficit after brain ischemia. Minocycline is a tetracycline antibiotic with antioxidant effect. The main objective of this work was to asse...
متن کاملActivity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems
Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The ...
متن کاملLavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease
Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...
متن کاملA Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike...
متن کاملProtective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats
Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016